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a b s t r a c t

Ensuring power system reliability under high penetrations of variable renewable energy is a critical task
for system operators. In this study, we use a loss of load probability model to estimate the capacity credit
of solar photovoltaics and energy storage under increasing penetrations of both technologies, in isolation
and in tandem, to offer new understanding on their potential synergistic effects. Increasing penetrations
of solar PV alter the net load profile on the grid, shifting the peak net load to hours with little or no solar
generation and leading to diminishing capacity credits for each additional increment of solar. However,
the presence of solar PV decreases the duration of daily peak demands, thereby allowing energy-limited
storage capacity to dispatch electricity during peak demand hours. Thus, solar PV and storage exhibit a
symbiotic relationship when used in tandem. We find that solar PV and storage used together make a
more significant contribution to system reliability: as much as 40% more of the combined capacity can be
counted on during peak demand hours compared to scenarios where the two technologies are deployed
separately. Our test case demonstrates the important distinction between winter and summer peaking
systems, leading to significantly different seasonal capacity values for solar PV. These findings are timely
as utilities replace their aging peaking plants and are taking energy storage into consideration as part of a
low carbon pathway.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Decarbonizing the electric sector can greatly contribute to an
overall reduction in anthropogenic carbon emissions, with solar
photovoltaic (PV) technologies representing a critical technology to
achieve this goal. Solar PV incurs little operational cost, while
providing health and environmental benefits attributable to lower
life-cycle emissions compared to fossil fuel energy generation [1,2].
However, generation from solar PV and other variable renewable
energy resources (e.g., wind, wave, run-of-river hydro) introduces
challenges in power system planning and operationwith respect to
variability, reliability, and flexibility. Regarding reliability, system
operators must accurately estimate the contributions that solar PV
can make during peak demand periods, when available capacity
reserves are lowest. Capacity value, or capacity credit, is a metric
used to assess the contribution of variable renewables to meeting
peak load, and represents the amount of additional load that can be
served in the system at the same reliability level due to the addition
of a specific amount of capacity [3]. Therefore, research to quantify
the capacity value of variable renewables on electric grids is both
useful and urgent [4]. In this context, energy storage has been
identified as part of the solution to accommodate higher integra-
tion of renewables into the grid [5] by providing more flexibility,
stability, and potentially increasing the associated capacity values
[6].

Though utility-scale solar and energy storage assets have been
commissioned to provide peaking capacity [7], replacing tradi-
tional, often highly polluting peaking plants, the capacity contri-
bution from solar PV is difficult to quantify and there is no
evaluation method that is broadly adopted across utilities and en-
ergy modelers [8,9,10]. Capacity values for standalone PV vary
widely across studies and by location, with estimates ranging from
0% to 93%, but often show diminishing returns as solar PV pene-
tration increases on the grid (e.g., Refs. [11e16]).

Energy storage is unique in that it offers controllable dispatch of
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electricity but is energy-limited and therefore cannot discharge for
an arbitrarily long period of time. Sioshani et al. estimated an
annual average capacity credit for a 4 h duration battery of 67%,
finding that the storage duration was a significant driver for the
capacity credit [17]. Alvarez et al. analyzed capacity credits as a
function of storage capacity and duration in California, finding
storage capacity credits near 100% for the first 3000 MW of 4 h
duration storage, dropping below 60% when storage reaches
10,000 MW [18]. Denholm and Margolis also investigated storage
deployment in California, calculating “peak demand reduction
credits” based on the load shape, finding full capacity reductions at
low penetrations of storage that decline rapidly as additional
storage capacity is added [19].

When solar PV and storage are considered simultaneously, the
concurrent shift in the net load profile suggests a symbiotic rela-
tionship: storage can be dispatched during hours when solar ex-
hibits diminished output, and solar helps to shorten the durations
of peak load that must be shaved by energy-limited storage sys-
tems. The rapidly declining investment costs of battery energy
storage systems e lithium ion battery chemistries in particular [20]
e havemotivated an abundance of research focused onmaximizing
the operational value of using variable renewables and storage
systems in tandem (e.g., [5,6]).

However, the existing literature focuses on the capacity value of
solar PV and energy storage in isolation, and does not account for
the presence of both technologies in the same system when
determining capacity credit. The goal of this paper is to demon-
strate a rigorous method to estimate the capacity credit of solar PV
and storage in tandem, considering hourly solar and storage
dispatch under varying penetration levels of both technologies.
This novel approach aims to quantify the capacity value of solar PV
and energy storage combined using the Loss of Load Probability
(LOLP) approach to calculate the Effective Load Carrying Capability
(ELCC). The use of ELCC allows us to identify the amount of addi-
tional load that can be served on a grid by each technology while
considering the necessary operational constraints in the systems.
The hour-by-hour estimation of storage charge or discharge is done
with an open source energy system optimization model that
properly reflects energy storage discharge duration constraints. In
addition, we explore the sensitivity of the capacity value to the
solar penetration level, energy storage system capacity, and the
dispatch duration of the storage systems.We apply thismethod to a
test case of the Carolinas region of the United States, which includes
high solar PV penetrations and near-equal winter and summer peak
demand.

2. Methods

In this study, we estimate the capacity contributions of solar and
storage, both together and in isolation, under a wide range of
deployment levels. An overview of the approach is shown in Fig. 1.
To estimate the capacity credit for solar PV and storage, we need to
compare hourly capacity availability from conventional dis-
patchable generators with hourly demand. To quantify generator
availability, we developed a spreadsheet-based Monte Carlo
simulationwith 600,000 realizations of generator availability. Since
solar PV and storage dispatch are treated as negative load by system
operators, hourly generation estimatesmust be subtracted from the
hourly load to obtain net load. While solar PV generation can be
directly subtracted from load, we do not know a priori in which
hours storage will be charged and discharged. To quantify the
optimal hourly charge and discharge pattern associated with
different storage configurations, we utilize Tools for Energy
Modeling Optimization and Analysis (Temoa), an open source en-
ergy system optimization model, as described in Section 2.2.
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Finally, the net load and generator availability estimates are used to
estimate the LOLP, ELCC, and capacity credit under different solar
deployment levels and storage configurations.
2.1. Loss of load probability and Effective Load Carrying Capability

LOLP is amethod to determine the probability of a power system
failing to meet load due to lack of available generator capacity [21].
The capacity contribution of an individual generator can be
measured by calculating the ELCC. In this section, we discuss our
approach and data sources to determine the ELCC for solar PV and
storage under a variety of scenarios.

To determine the LOLP, we assigned a reliability factor to each
firm generator in the power system based on Equivalent Forced
Outage Rate - Demand (EFOR-d) values from the North American
Electric Reliability Corporation (2019), distinguished by generator
type with values ranging from 0.020 to 0.138, as shown in Table S1
in the Supporting Information. EFOR-d represents the expected
capacity of a generator that is unavailable due to forced outages
during time periods in which the generator would operate. We
used publicly available generator data, including capacity and
generator type, for all generators greater than 25 MW, and hourly
power system load data, as provided by the U.S. Energy Information
Administration.

We then determined the grid-wide aggregate available gener-
ating capacity, as described in Equation (1).

Gt ¼
X

i2I

giteit ; ct2T (1)

Gt represents the cumulative generation available to meet de-
mand in time period t for a given simulation, as determined by the
generator nameplate capacity git and the binary variable eit which
is introduced to indicate availability, where I is the set of existing
power generators indexed by i and T is the set of time periods in the
analysis indexed by t. Existing solar was treated as negative load,
and thus not included in this summation.

In each simulation, a random number (ri) between zero and one
was selected to determine the value of ei, as follows:

If ri > ð1� EFORdÞ; then ei ¼1 otherwise ei ¼0

The cumulative available generation results (Gt) was compared
to the net load values for every hour of the year, represented as Lt . If
there was an instance where Gt is less than Lt , the binary variable dt
was set to 1 to represent a loss of load event. Otherwise, dt was
equal to 0.

If Gt < Lt ; then dt ¼ 1 otherwise dt ¼ 0

The Loss of Load Expectation (LOLE) was defined as the number
of instances in which Gt was less than Lt throughout the selected
time period T divided by the total number of instances, as shown in
Equations (2a) and (2b).

LOLE¼
PT

t¼1dt
T

; or (2a)

LOLE¼
XT

t¼1

pfGt < Ltg (2b)

Since cumulative generation is based on probability, we added a
Monte Carlo simulation component to test the sensitivity of the
available cumulative generation value. LOLE was calculated for
every iteration j of the available generation values across all
modeled hours of demand. A typical grid targets a standard LOLP of



Fig. 1. An overview of the approach used to calculate the capacity contributions of solar power and energy storage.
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0.1 days per year, or a loss of load once every 10 years [22]. We
model this target as 24 h of outages spanning the equivalent of a ten
year period. LOLP for each trial k can be described using Equation
(3):

LOLPk ¼
1
n

Xn

j¼1

LOLEj;k (3)

An initial fixed load of LI was added equally in all hours to ensure
the initial LOLP of every trial performed equaled a 0.1 days/year
reliability in order to adjust for under- or over-built systems. This
constant addition means the shape of the curve does not change.
This value Lk was different for each trial, setting a baseline with
comparable reliability for the calculation of the ELCC for solar and
storage.

To determine the ELCC for solar, incremental amounts of solar
capacity Gs;t were added to the grid, with its generation serving as a
reduction in load for each relevant hour.When this solar generation
decreased load in hours that would otherwise experience a loss of
load event due to insufficient generator availability, the addition of
this solar served to decrease the LOLP and improve power system
reliability. To determine the capacity contribution of this solar po-
wer, additional fixed load Ls was added to every hour, selected at a
value that increases the system outages to a level that returns the
grid to the 0.1 day/year LOLP.

For all existing time periods in analysis and each trial k,

If Gt;k þGs;t < Lt þ Lk þ Ls; then d0t;k ¼ 1 otherwise d0t;k ¼ 0

To account for the initial fixed load and solar capacity, LOLP was
calculated using Equation 4, which is Equation (3) expanded to
include LI , Gs;t , and Ls.

LOLPk ¼
1
n

Xn

j¼1

PT
t¼1d

0
t;k

T
; or (4a)

LOLPk ¼
1
n

Xn

j¼1

XT

t¼1

p
�
Gt;k þGs;t < Lt þ Lk þ Ls

�
(4b)

Ls is selected such that the LOLP returns to its benchmark
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reliability value. The resultant Ls represents the ELCC, defined as the
amount of additional load the system can reliability serve in
response to the addition of the solar (and later, storage) generation.
Dividing this value by the nameplate capacity of the technology
provides its capacity credit ðCCsÞ, as shown in Equation (5).

CCS ¼
Ls

Gs;nameplate
� 100% (5)

Depending on the values of Ls and Gs;nameplate, this equation can
be used to find either the cumulative capacity credit or incremental
capacity credit. For cumulative capacity credit, the total amount of
load that can be served and the total solar capacity on the grid are
used in the equation. For incremental capacity credit, only the Ls
and Gs values associated with the next increment of solar capacity
are used.

In the calculation of capacity credit for solar PV, hourly solar
generation is subtracted from load and the reliabilitymetrics are re-
calculated. In order to calculate the capacity credit attributable to
energy storage, we deployed an economic dispatch model to
determine the optimal charge/discharge behaviors reflective of the
energy-limited nature of storage, described in the following section
and similar in approach to Sioshansi et al. [17]. The resultant stor-
age dispatch pattern was then subtracted from the net load and
used within the Monte Carlo model to determine storage capacity
value in the presence of the specific solar deployment levels.
2.2. Energy storage dispatch

As noted in Fig. 1, we estimate the optimal storage charge and
discharge pattern at an hourly resolution. The hourly charge and
discharge decisions were then used as inputs to adjust net load for
every hour in the LOLP.

Temoa, an open source energy system optimization model, was
used to find an optimal storage dispatch pattern in light of the
assumed solar capacity on the grid in each scenario. Temoa is a
bottom-up energy system optimization model that performs linear
optimization to identify the least-cost pathway for energy system
development [23], relying on open-source code and publicly
available input data. The model itself is implemented in Python
using Python Optimization Modeling Objects (Pyomo), the input



Fig. 2. (a) Incremental and (b) cumulative capacity credit for solar photovoltaic by
nameplate capacity.
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data is stored in a SQLite relational database, and the CPLEX solver
is used to perform the optimization. The energy system represen-
tation within Temoa is structured as a network in which technol-
ogies are linked together by a flow of energy commodities. The
model performs linear optimizationwith an objective function that
minimizes the present cost of energy supply over a user-defined
time horizon. Decision variables include the installed capacity of
different technologies and their associated production. The model
balances energy supply and demand over a user-defined set of time
slices that represent different time segments across the year. For
this application of Temoa, we turned off the capacity expansion
capability and focused on operational decisions given fixed capacity
installations. The optimization is conducted for a single year with
chronological hourly resolution, with fixed amounts of solar and
storage capacity added parametrically. The inclusion of storage
capacity ensures that the model will consider its capacity when
making optimal dispatch decisions to meet hourly load. We
included relevant operational constraints to ensure realistic energy
system performance. Additional information on Temoa develop-
ment and operation can be found in Refs. [23e25]. In past analyses,
Temoa has also been used to evaluate dispatch and has been
benchmarked against a unit-commitment and dispatch model [26]
and also used to perform peak-capacity deferral analysis of energy
storage devices in the Carolinas power systems [24].

2.3. The Carolinas as a case study

As a case study, we tested the grid systems operated by Duke
Energy Carolinas and Duke Energy Progress, which cover most of
the states of North Carolina and South Carolina in the United States
and have a peak demand of 33.1 GW. This region is interesting and
suitable for this analysis because North Carolina saw a large influx
of solar PV capacity throughout the 2010s, making it the state with
the second highest installed capacity of utility-scale solar PV [27].
In addition, Duke Energy recategorized their grid systems from
summer peaking systems [28,29] to winter-peaking systems
[30,31], a timeline that corresponded to a decline in their reported
solar capacity values from 46% of nameplate capacity to 5% from
2014 to 2018 in Duke Energy Carolinas [29,32]. In a previous study
of this region [24], DeCarolis et al. provided a holistic assessment of
the environmental and economic benefits of energy storage
weighed against its costs within the context of Duke's territory in
the Carolinas. The database developed for that analysis was used in
this study and included data on the generators, their nameplate
capacities, and efficiencies, relying on EIA 860 data [33]. Hourly
demand data and solar generation data were from the EIA 930
dataset [34]. Hourly capacity factors for solar were derived by
comparing the actual (non-simulated) generation to installed ca-
pacity for eachmonth of the dataset, which spanned August 2018 to
July 2019.

We first analyzed solar PV at 20 different capacities, before
incorporating energy storage. Eleven were chosen to correspond
with solar capacities previously analyzed by the electric utility,
while the remaining nine PV capacities were chosen to offer a more
complete range of values. We then selected five of the solar PV
capacities (0, 3, 5, 10, and 13 GW of solar) to examine concurrently
with energy storage. Four configurations for energy storage were
considered (500 MW and 2 GW, each with both 2 h and 4 h
maximum discharge durations), yielding a total of 20 solar and
storage scenarios. Later, we selected a fifth configuration of energy
storage, 80 MW with 4 h maximum duration, to benchmark our
results to existing literature.

The chosen storage durations were based on commonly
observed configurations for storage projects, excluding those
intended for ancillary service applications [35]. Storage capacities
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were selected to provide a range of results and allow for compar-
ison to published studies (including [24]). Trials with 0 GW solar
were conducted to observe how storage would behave in the
absence of solar. Approximately 3 GW of solar was on Duke Ener-
gy's grid in 2017 and approximately 5 GW of solar were on the grid
at the beginning of 2020. Trials including 10 and 13 GW of solar
were also conducted to assess how storage would perform with
additional solar capacity beyond currently planned solar
investments.

For each scenario, a Monte Carlo simulation consisting of
600,000 iterations is conducted, evaluated in 12 separate trials of
50,000 iterations at a time. This number of iterations is selected to
ensure that a sufficient number of loss of load events would be
identified and allow for the calculation of LOLP. Iterations beyond
50,000 proved to be computationally intensive and offered little
additional value.
3. Results and discussion

3.1. Solar capacity value

Incremental additions of solar generation showed diminishing
reliability value, consistent with utility planning documents and
previous academic literature (e.g., Refs. [14e16]). Fig. 2a and 2b
illustrate this trend for the incremental solar capacity credit and
cumulative solar capacity values, respectively. The box and whisker
diagrams represent the median, first and third quartiles, minimum,
and maximum measured capacity credits for the solar PV.



Fig. 3. Energy storage dispatch pattern for 2GW/8 GWh of storage on a grid with 5 GW
solar PV. Blue indicates storage charging, which mostly occurred overnight or in the
early morning. Red indicates storage discharging, which mostly occurred winter
mornings and early summer evenings.
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Fig. 2a includes incremental capacity values for solar PV that
begin at median values of 0.40 and drop to 0.12 once 6 GW of solar
has been added and further erode to 0.07 at 13 GWof solar PV. This
diminishing capacity value in response to increasing PV penetra-
tion is due to the peak net load shifting to hours in which there is
less solar generation. The hours in which the solar resource is weak
or nonexistent gradually become the hours of highest net load as
solar capacity is increased, driving these diminishing returns.
Increasing solar penetration changes the net load curve in two
ways: first, solar pushes high summer net load into the late after-
noon and early evening, when the solar resource declines in in-
tensity; second, as higher solar generation shaves summer peaks
more effectively thanwinter peaks, the peak net load hour shifts to
thewinter, when the solar production is lower. In general, we found
that the seasonal shift in net load was more impactful on capacity
credit than the daily shift.

The irregular intervals of the solar PV capacity additions shown
in Fig. 2 correspond, in part, to benchmark values drawn from the
integrated resources planning studies developed by the utilities
serving our study area (see, for example, [36]; [32]). In general, our
capacity values for PV exceed or match the capacity values in these
studies. In both utility studies, the addition of solar PV leads to an
increase in the share of loss of load events that would occur in the
winter, which further decreases the capacity contribution of sub-
sequent solar additions.

When comparing the results of our Monte Carlo simulations
within each scenario, we observed the importance of infrequent
but high impact combinations of events. Namely, in iterations
where multiple large generators were simultaneously unavailable,
the system-wide cumulative generation would be far below the
expected range. Due to the load profile of our study region, which
has a greater number of sub-peak, high load hours in July and
August, these iterations with low available generation were
disproportionately impacted by the summer loss of load events.
Therefore, in these instances, we observed higher capacity values
attributable to solar due to the better correlation of solar generation
to summer peak loads. Conversely, in the Monte Carlo iterations
that did not have extremely low cumulative available generation,
our results showed the importance of the dual-peaking behavior of
the system (i.e., the magnitudes of the peak summer hour and peak
winter hour were less than 100 MW between each other). In these
instances, the solar PV capacity value remained relatively low as
solar PV capacity increased.

3.2. Influence of energy storage on net load

The hourly energy charge and discharge pattern across the year
was determined for each storage duration, storage capacity, and PV
penetration combination. Fig. 3 shows the resulting storage oper-
ations for one scenario: a 2 GW battery systemwith 4 h of duration
(i.e., 8 GWh) on a grid with 5 GWof solar PV. In these results, we see
that energy storage charging occurs during lower load hours, which
include early summer mornings and winter mid-afternoons. We
also observe that the storage discharges during peak hours, namely
hot summer evenings and cold winter mornings, as driven by air
conditioning and electric heating loads, respectively. The timing of
the discharge serves to reduce the peak net load, providing addi-
tional firm capacity to the power system. The energy storage sys-
tems demonstrate consistent charging and discharging patterns
under all combinations of storage capacity and solar penetration,
while varying storage duration yielded slightly different opera-
tional behaviors. Storage reduced overall grid operational costs
throughout the year. Comparable figures are provided in the Sup-
porting Information, which illustrate the shifting diurnal and sea-
sonal charging and discharging patterns of all energy storage
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configurations across the examined penetrations of solar PV.
Fig. 4 shows examples of these operational outputs for select

days, with load (red), net load with solar PV (orange), and net load
with both solar PV and 2 GW/8 GWh energy storage (dashed blue).
Fig. 4a and 4c shows January 22, a high demand winter day on the
system, and Fig. 4b and 4d shows July 16, a high demand summer
day. Fig. 4a and 4b shows the impact of 5 GWof solar PV on net load,
whereas Fig. 4c and 4d illustrate 10 GW of solar PV.

Based on Fig. 4, several important observations can be made. By
comparing the winter (Fig. 4a and 4c) and summer results (Fig. 4b
and 4d), we see that solar generation reduces the peak net load by a
greater magnitude in the summer months due to a better corre-
spondence between solar generation and peak load. When we in-
crease solar penetration from 5 GW (Fig. 4a and 4b) to 10 GW
(Fig. 4c and 4d), we can see the diminishing capacity value of solar,
with the increased PV generation reducing peak net load to a lesser
extent. The addition of energy storage both increases net load
(during charging) and decreases net load (during discharging).
Higher PV penetrations narrow the duration of the net peak loads
in both winter and summer, as shown in Fig. 4. Because the energy
storage systems have a fixed discharge duration, these narrower
peaks allow the energy storage systems to reduce the new net peak
loads more effectively.



Fig. 4. Net load on peak winter and summer days with solar generation and a 2GW/8 GWh energy storage system. (a) January 22 with 5 GW solar; (b) July 16 with 5 GW solar; (c)
January 22 with 10 GW solar; (d) July 16 with 10 GW solar.
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3.3. Influence of energy storage on capacity value

The capacity credit values for four energy storage power ca-
pacity and duration combinations at various PV penetrations are
shown in Fig. 5. Fig. 5a and 5b shows the results for 500 MW of
storage with two- and 4-h maximum discharge durations, respec-
tively, while Fig. 5c and 5d shows comparable results for 2 GW of
Fig. 5. Capacity credit of energy storage as a function of solar PV deployment, given differen
2GW/8 GWh

828
storage, also with two- and 4-h discharge durations. The results
presented in this figure define the capacity credit of energy storage
as the additional load served divided by the power capacity rating
of the energy storage system.

By comparing the capacity values for the 2-h duration storage
systems (Fig. 5a and 5c) to the capacity values for the 4-h systems
(Fig. 5b and 5d) at comparable solar penetrations, we observe that
t storage configurations: (a) 500MW/1 GWh; (b) 500MW/2 GWh; (c) 2GW/4 GWh; (d)
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longer duration storage more effectively reduces peak net load and
results in a higher capacity value for storage. Shorter duration en-
ergy storage is energy-constrained and therefore cannot participate
as effectively in peak shaving during multi-hour periods of high
demand.

As we add more storage to the system, we observe a consistent
decrease in the capacity value provided by that storage. This
decrease is best shown by comparing storage systems with similar
durations (i.e., Fig. 5ae5c; and Fig. 5be5d). Each increment of
storage added typically works to flatten the net load profile by
charging during low demand hours and discharging during high
net load hours. Subsequent energy storage would therefore face
flatter, longer duration net load peaks and be more likely to be
energy-constrained in further reductions of the peak net load.

To allow us to directly compare our results to a previously
published study, we conducted the analysis with an additional
storage design not shown in Fig. 5: 80 MW, 320 MWh. In the
presence of 3 GW of solar, we find that our average capacity credit
for the storage system is 75%. This is similar to the results presented
in Ref. [17]; which found 67% using an ELCC method and 75% using
an equivalent conventional power method. However, in our anal-
ysis, we find a wide range of results for the capacity value of this
smallest storage system, with Monte Carlo simulations producing
results ranging from 0% to 100%. This is likely due to the larger
capacity of the individual generators relative to that of the storage
system, which can lead to a “lumpiness” that produces the wide
range of results.

In nearly all cases across all storage system designs, we observe
that increasing solar penetration leads to higher capacity values for
storage. Again, this is driven by the shortened net load peak created
by solar (and shown in Fig. 4). Looking within each panel of Fig. 5,
we see that identically designed energy storage systems provide
greater capacity value as the penetration of solar PV increases. This
means that when solar and storage are used in tandem, they pro-
vide greater power system benefits than the sum of their individual
contributions.

The synergistic benefits of solar PV and energy storage are
illustrated in Table 1. The values in this table represent the total
capacity value of storage and solar, divided by the sum of the in-
dividual capacity values for solar and storage, minus one. When
used concurrently on a power system, we found that the total ca-
pacity value provided by solar PV and energy storage consistently
exceeds the sum of the capacity values for the two technologies
when used separately. As shown in Table 1, the concurrent use of
solar and storage results in an increase in capacity value ranging
from 2% to 40% above the sum of the individual solar and storage
capacity values when considered separately. This analysis does not
consider DC-coupled solar plus storage systems, where inverter
capacity could introduce additional limitations. Instead, this
approachmore broadly reflects the use of solar PV and storage, each
located anywhere on awell-integrated power system. The ability of
the solar PV to reduce the duration of the peak net load serves to
increase the capacity value of the energy-limited storage systems.
The contribution of this additional capacity value can allow power
Table 1
Increased capacity values of solar PV and energy storage when used together.

Solar PV Capacity

3 GW 5 GW 10 GW 13 GW

Energy Storage System 500 MWe2 h 7% 22% 13% 15%
2 GWe2 h 24% 31% 20% 36%
500 MWe4 h 11% 19% 14% 14%
2 GWe4 h 7% 12% 27% 40%
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systems to meet reliability target at lower overall costs.
With very high penetrations of solar (i.e., 13 GW), we do see

some reduction in the capacity value of storage systems under
certain configurations, as shown in Fig. 4ae4c. Increasing solar
penetration from 10 GW to 13 GW broadened winter morning net
load peaks and many overnight and early morning winter net load
hours exceeded afternoon and evening net load. Instead of winter
peaks occurring between 8 and 10 a.m., the net peak hours on a
typical winter day shifted earlier (5e9 am) in the presence of high
penetrations of solar PV. This suggests that there is a limit to the
synergistic capacity benefits of coupling solar PV and storage.

In this analysis, we optimize the charge and discharge decisions
of the energy storage to minimize the operational costs of the po-
wer system, subject to operational constraints, similar to previous
studies. Using this approach, the discharge decisions for the storage
systems are largely aligned with the goal of reducing the peak net
load because these hours typically represent the highest value
periods of the day. Instances where the storage system does not
minimize the peak net load are driven by the Temoa objective to
minimize operational costs. Although these decisions may not
serve to minimize peak net load, they can represent realistic stor-
age operations. A similar approach was used in Ref. [17]. We tested
the sensitivity of our results to a formulation that discharges stor-
age systems to minimize net load without power system con-
straints and found modest increases in the capacity value of the
storage. For example, under this approach, the median capacity
value of a 500 MW, 4-h system increased from 87% to 98%, when
utilized on a power system with 13 GW of solar.
3.4. Examining shifting net load with energy storage

In Fig. 6, we further explore the impact of energy storage
discharge decisions on peak net load, presenting the results of the
operation of a 2 GW, 4-h storage system under three PV penetra-
tions (0 GW, 5 GW and 13 GW). Fig. 6a, 6c, and 6e have the eight
highest net load hours plotted in descending order before consid-
ering storage, while Fig. 6b, 6d, and 6f have the new eight highest
net load hours after considering storage dispatch. The darker bars
show net load without storage and the lighter bars show net load
including storage impacts. Winter and summer days are depicted
by blue and red bars, respectively, and the percentages above the
bars represent the storage discharge in the given hour relative to
the maximum discharge capability of the energy storage system.

In Fig. 6, we see that increasing the solar penetration resulted in
morewinter hours serving as the annual net load peak. Under 0 GW
and 5 GW of solar, the introduction of energy storage effectively
reduces the winter peaks, shifting the system back to a summer
peaking system. In some cases, the presence of storage changed the
hours of peak net load to hours in which the storage state of charge
is unable tomeet the newpeak, similar to how the presence of solar
shifts the hours of peak net load to hours with weaker solar
resource. This effect is shown in Fig. 6c and 6d. At 5 GW PV levels,
the eight highest net peak hours in the year e that is, the peak net
load hours once storage has been added to the gride see little to no
actual storage dispatched. During these peak demand hours, PV
generation contributed substantially towards reducing peak.
Lengthening the duration of the storage capacity beyond 4 h or
changing the operational strategy for storage could further increase
the capacity value of this resource. Under 13 GW of solar, with
storage, we see the top 6 h now occur in the winter (Fig. 6f). With
longer plateaus of peak net load, we see storage discharging at less
than its maximum rate. This result again suggests that larger stor-
age systems would further reduce the winter peak hours and likely
return the system to a summer peaking system.



Fig. 6. Net load at peak hours without storage (darker bars) and with storage (lighter bars) with (a, b) no solar; (c, d) 5 GW solar; and (e, f) 13 GW solar PV. The peak net load hours
are displayed in descending order based on net load before storage (left column) and after storage (right column). The percentages show the storage discharge in the given hour
compared to maximum discharge capability. Winter and summer days are depicted by blue and red bars, respectively.
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3.5. Caveats

LOLP analyses can lack certain real-world operational con-
straints, which may affect the actual loss of load distribution. The
method utilized here assumes that all available generators are
equally able to serve load in all hours. This implicitly disregards
operational constraints such as ramping limits of generators. Such
ramping limits can be a binding constraint while meeting morning
winter peaks, which are narrower and may be less predictable than
broader summer peaks. In addition, generator run time and unit
commitment constraints are not considered, which could constrain
the availability of certain generators. Transmission and distribution
constraints could also limit the ability of certain generators to serve
peak load. Future work could also consider the implications of
meteorological uncertainty and its impacts on solar generation and
demand. Such limitations, however, are not unique to this analysis.
830
4. Conclusions

Through this study, we demonstrated that the capacity value of
solar depends on several key factors, including the penetration
level of solar PV on the grid and whether the power system's net
peak occurs in the winter or summer. Without significant solar
resource diversity, the incremental capacity value of solar PV is
greatly diminished when high levels of solar are added to the grid.
This effect, however, can be alleviated through the addition of en-
ergy storage.

The dispatchability of energy storage allows it to discharge
during peak net loads, but because it is energy-limited, the
maximum duration of discharge limits its capacity value. We found
that energy storage provides more capacity value under higher
penetrations of solar PV because the solar generation shortens the
duration of peak net load, allowing the energy-limited storage to
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better reduce the remaining peak. Used in tandem, solar and en-
ergy storage can provide more capacity value than the sum of the
two technologies used separately. These technologies work sym-
biotically to provide essential grid service. On many days, solar
shortens the net load peak, while two- or 4-h duration storage
effectively shifts the remaining peak load.

The capacity value of storage proved to be sensitive to the
discharge duration, with 4-h storage providing significantly more
capacity value than 2-h storage, relative to the maximum discharge
rate. Like solar, the addition of storage offers diminishing returns
for capacity value. In the presence of significant quantities of stor-
age, the peak net load has already been significantly flattened,
reducing the opportunity for subsequent storage to further reduce
the peak.

We demonstrated that the season in which the peak net load
occurs plays an important role in the capacity value of solar PV. In
the Carolinas, thewinter peak (driven by electric heating loads) and
the summer peak (driven by air conditioning loads) are nearly equal
in magnitude. Solar PV generation is better aligned with the sum-
mer peaks and provides greater capacity value during these times.
With efforts to “electrify everything” as a pathway to achieve deep
decarbonization, power system planning needs to carefully
consider the impacts of shifting load profiles on the capacity pro-
vided by solar and storage. In contrast to traditional dispatchable
power plants, the capacity value provided by solar and storage is
highly dependent on the characteristics of the power system. As the
power sector continues to evolve, we will need to consider the
shifting capacity values provided by these emerging technologies.

Finally, the approach to estimating capacity credit shown in
Fig. 1 was performed with publicly available data and open source
models. Our method can be adapted and improved to more
consistently and rigorously estimate capacity credits for solar PV
and storage within different power systems.
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